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third-switching lines are to the right of this same straight line. It is sufficient to estab- 
lish the diminution of the third function in (2.17) along (2.14) (Y = - 1) and the non- 

positiveness of a@ls f ai,. We have 

E 
I 
(2.14) = CT3 - 4 (2 t 

since 73 < Z2 follows from the inequalities $13 

81:,,ldlz = El!22 ](TQ’-- 11 (CL12 -I_ 1) 1”22_l t 

From (2.21) 

< 0, p13 + 1 > 0 . Further 

(Tg - 12) (cos Ta + l’&?-%,‘] (5.3) 

z3 ’ = za sin” T3 (2E, - -r& ](i .-+ I& sir12 rs -t ~~21-1 

Obviously, 9 < r,‘< 1. By Lemma 1, ~0s ~~ < 0. Consequently, (5.2) is nonpositive, 
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We prove new properties of the precessional motions relative to the vertical of 
a heavy solid body having a fixed point. In particular, we have shown that semi- 
regular precessions are possible only in the Hesse solution, while in the case when 
the precession rate and the self-rotation velocity are not constant, the constant 
of the integral of the angular momentum equals zero. 

2, Strtsmsnt of ths problsm. Definition &l-3]. The precessional 

motions of a solid body with one fixed point are the motions under which the angle bet- 
ween two straight lines, one of which is fixed in the body , while the other is fixed in a 

nonmoving space, remains constant. 
let k and v* be unit vectors fixed, respectively, in the body and in space, and let 6 

be the angle between them. Then, the body’s motion is a precession if 6 = const. By 
introducing into consideration the Euler angles 6, cp, I#, we obtain the expression 
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w = rp’k + $‘v* (1.1) 

for the angular velocity vector 0 (ol, Q *, 0 ,J , showing that the vector c?) Jies during 
the whole time of motion in the plane passing through the vectors k and v*. If in for- 

mula (1.1) rp’ and 4’ are constants, then such motions of the body are called regular 
precessions. Motions in the case 9’ = const are called semiregular precessions [Z]. 

Appel’rot @] studied precessions relative to the vertical (v* coincides with the unit 
vector u in the direction of the force of gravity) of gyroscopes whose inertia eliipsoid 

at the fixed point is an ellipsoid of revolution. He showed that the precessions of such 

gyroscopes are impossible if the center of gravity does not lie on the perpendicular to 

the circular cross section of the inertia ellipsoid, Subsequently the papers of Italian 
scientists were devoted mainly to precessional motions. Grioli [l] examined regular 
precessions relative to a sloping axis (the vector v * does not coincide with vector v). 

Taking the additional condition (b = J;‘, he found a new solution characterized by the 
conditions 8 = n / 2, w3 = const. The center of gravity of Grioli’s gyroscope lies on 

the perpendicular (k) to the circular cross section of the inertia ellipsoid. Bressan [4], 
investigating precessional motions in the Hesse solution, showed that in this solution 

there exist only precessions relative to the vertical Y and the horizontal axis v* (the 
angle between vectors v and v* equals n i 2). We note that the constant of the integ- 

ral of the angular momentum is nonzero in the first case and equals zero in the second. 
The examples of precessional motions given by the Italian scientists in the problem of 
the motion of a heavy solid body having a fixed point are not exhaustive since an ana- 

lysis of special solutions in this problem shows that, for example, Dokshevich’s solution 

[s] describes a precessional motion relative to the vertical. Therefore, it is of interest 
to obtain the general properties of precessions and to point out all the cases of integra- 

bility which are characterized by a precessional motion. 
Let us examine the precession of a heavy solid body relative to vertical V. With the 

body we connect a right-handed coordinate system in such a way that the third coordi- 

nate axis passes through vector k. By vl, v2, vs we denote the components of unit 

vector y and by e,, e2, ea the components of the unit vector in the direction from 

the fixed- point to the body’s center of gravity. By a rotation of the moving coordinate 
system around the third axis we achieve the equality e2 = 0, which does not restrict 

the problem’s generality. Taking the Euler angles as the variables of the problem, from 

(1.1) we find (v* = v) 

Y1 = sin 6 sin cp, vs = sin 6 cos cp, v3 = co9 6 

o1 =*‘sin@sincp, a2 ==$*sinticoscp, Q 3 I-1 *’ cos 6 + ‘p’ 

Using the notation in [S] we write the equations of motion of the solid body in the 

case of precessions 6’ = 0 as 

9” (a1 sin cp + a2 cos rp + a3) + Al,cp” - A,,~P’~ + I#‘(P’ x G.2) 
(a, cos cp - 2a, sin cp - Za,) + q-2 (as cos 2y, + 
a7 sin 29 + us cos cp - a, sin cp -+- dlJ + a,, cos cp = 0 

9” (& cos TV + a2 sin cp + a& + Az3~” + Al,rpm2 + 
$*cp’ (2% Cos cp + b, sin q, + 2a,) + $,‘2 (a, cos 2fp - 
% sin 2~ + a, cos cp + b, sin v + b4) - a,, sin cp + b, = 0 
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$,” (CO Cos cp 4 cl sin cp + c2) + A 35 q” - (c3 cos 2v + c4 sin 2~p + 
c5 cos cp - cg sin tp) qS2 - c7 cos ‘p = 0 

Here ai, bi, ci are constants. (I’ is the product of the body’s weight and the distance 
from the fixed point to the center of gravity, A ij are the components of the inertia ten- 
sor det A). 

aI = A,, sin 6, a, = A,, sin 6, a3 = A,, cos 6 CL 3) 

a4 = (Arr - A,, -t A3,)sin 6, a6 = A,, COS+, 

a6 = l/3 A,, sin2 6 

a7 = l/3 413 sin2 6, a3 7 (A,, - A,,) sin 6 cos 6 
a, = A,, sin 6 cos 6, al0 = ‘I2 A,, (sin2 6 - 2 co.9 6), 

all = e,T’ sin 6 

br = A,, sin 6, 6s = (A,, - A,, - A,,) sin 6, 

b3 = (A,, - A,,) sin 6 cos 6 

b, = ‘/a Al3 (2~0s~ 6 - sin2 S), b, = e, rcos 6 

co = A,, sin 6, cl = A,, sin 6, c, = A,, cos 6, 

c3 = A,, sin26 

CP = */3 (A,, - A,,) sin2 6, c6 = A,, sin 6 cos 6, 

% = A,$ sin 6 cos 6, cr = err sin 6 

The integrals of Eqs. (1.2) are 

cp’@r - I/AD, = k (1.4) 

Here 
A,, rp” + 2cp’$’ GD1 - +‘“@, - 2 (c&n cp -I- El) = 0 11.5) 

@I = co cos ‘p + cl sin cp + c2 (1.6) 

03 = c4 cos 29 - c3 sjn 29 - 2c, sin 4, - 2C&os 9 - Cg 

cs = AS3 co9 6 + 1/2 (A,, f A22) sin2 6, 3, = A' $_ %r Cos 6 

By k and E we have denated,respectively, the constants of the integrals of the angular 

momentum and the energies. 

2, The case8 cp’ = const,, *Jr’ # const and cp‘ + const, 9’ = conk 
From integrals (1.4), (1.5) we find the dependence of 9,’ and Cp’ on the variable ‘p 

We represent 

qI’” )=: 1 
_ 133(1)$ --I- CD,2 [2(c, sin ‘p + E,) 0, + A?] (2.2) 

A,@, + @,” = ml cos 29 + m2 sin 29 + m3 

m, = Vz [A,, (A,, - A,,) + Aza2 - A13’1 sin2 6 

m, = (A,SA,, - A33A12) sin2 6 

m3 = r/a [AIs + A232 - Ass (A,, -+- A,,)1 sin’ 6 

The denominators in (2. l), (2.2) do not vanish identically with respect to the variable 
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9 and, consequently, these formulas solve the integration problem for Eqs. (1.2) under 
tne condition that they are consistent. To seek the sufficient conditions for the existence 
of precessions it is necessary to require that the values of q’ and $* in (2. l), (2.2) satisfy 
Eqs. (1.2). If we substitute them into the last equation in (1.2) we arrive at an identity. 
If we substitute (2. l), (2.2) into the equation obtained by the addition of the first and 

second equations in (1.2), multiplied, respectively, by sin cp and eos cp, then once 
again we obtain an identity, Therefore. it suffices to substitute ‘p’ and Q’ only in the 

first equation in (1.2). 
Introducing 9’ from (2.1) into the first equation in (1. ‘2) we obtain 

Qts [(al sin 4, 4 a2 Co.9 rp + as> Q + A13@2j rP** + 
(2.3) 

‘pa2 {(al sin g, + a2 cos cp + as) [of>, (cl CoS cp - Co sin 9) -t- 

%D,(D,l - A,,cD22 + CDL@, (ad cos ‘p - 2% sin cp - 2%) + 

aI2 (a, cos 2rp + a, sin 2q;, + ugcos cp - a9 sin 19 + udl -i- 

u,,@,,~ cos cp + kZ (aa cos 29 + a7 sin 29 + % CoS cp - 

a, sin r.p f u,,J = krp’ [2aD, (aI sin cp i- us COS ‘p -b us) + 
gt>, (a* cos ‘p - 2u2 sin cp - 262,) + 2Q (f&3 cm 29 + 
u7 sin 29 f a$ cos q - u$ sin 9 + ulo)~ 

where 
@s = cs cos 29 + c4 sin 2gp + c5 cos cp - c6 sin cp 

It is known that only a regular precession holds in the Lagrange gyroscope for con- 

stant qp’ and 4’ . Let us consider the case cp’ = const, $‘# const. 
Theorem 1. Precessional motions of a heavy solid body relative to the vertical 

are dynamically impossible in the case cp‘ = con&, $’ + co&, . 

Proof. Let us return to Eqs. (2.2). (2.3). Because q’ = const these equations 
should be identities, By equating to zero the coefficients of sin 39 and cos 3rp in 
expression (2.2) and the coefficients of sin 59 and cos 5~ in Eq.(2.3), we find 

elc4 = 0, etcs = 0, e3C4 = 0, egC3 = 0. 

Since ei2 + es2 = 1, it is necessary to assume 

cs = 0, c, = 0 (2.4) 

or A,, = 0, A,, = A,,. ~denti~ing Eq, (2.2) with respect to g, and taking (2.4) 
into account, we obtain 

m,(p’2 - Z?c,c, = 0, m,q’2 + 2c,c, = 0, E,c, = 0 (2.5) 

2E,c, + ~7~8 = 0, m3gps2 + (2&c, + 2cgc, - k2) = 0 

At first let E, = 0. From the fourth equation in (2.5) it follows that ~7 = ‘0 (el = 
0). The first two equations in (2.5) yield the equalities m, = 0, m, = 0 and, con- 
sequently, from the relations for ml, ma it follows that A,, = 0, Aa* = 0. From 
formula (2.1) it follows that 9’ = const. Consequently, E, # 0, ce= ASS cos 2p = 
0. The assumption cos + = 0 leads once again to the equalities cI, = 0, AIS = 0, 
AZ3 = 0. set A,, = 0, cos 6 # 0. Equating to zero the coefficient of Cos 4rp in 
Eq. (2.3), we arrive at the equality A,, = 0, whence once again it follows that 9’ = 
const. The theorem is proved. 
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Let us consider the case of a semiregular precession: $’ = const. 
Theorem 2. Semiregular precessions of a heavy solid body, having a fixed point 

relative to the vertical,take place only in the Hesse solution. 

Proof. Assuming the precession rate to be constant, we substitute the value of y’, 

found from (1.4),into Eqs. (1.2) and (1.5). The requirement that the relations obtained 
be identities with respect to the variable 9 leads to the parameter conditions 

(2.61 

e, = 0, e2 = 0, e3 = 1, A,, = A,, = 0, Ala2 = A,,(A,l - A,,) 

qp= r 
i&a cos 6 ’ k = A,,q' sins 8, E I= + A~~~‘2sin2%--eaI?cos@ 

The dependence of variable rp on time is established from (1.4) 

cp’ zzz - &A 13 sin 6 sing, + AS3 cos 6) 

The projection of the kineric moment onto the third coordinate axis bearing rhe body’s 
center of mass is Alawl + AS3a3 == 0. The linear invariant obtained and conditions 
(2.6) characterize a special case of Hesse’s solution, 

This theorem was proved for a gyrostat in 171. 

3, The prsccsrfon rat8 and the velocity of nelf-rotation are 
not constant, We now assume cp’ # con&, 4’ # con&. 

Theorem 3. The necessary condition for the existence of precessional motions of 

a heavy solid body, having a fixed point, in the case when the precession rate and the 
self-rotation velocity are not constant, is the equality k = 0. 

Proof. Having set cp’ from (2.2) into relation (2.3), we obtain an equation of the 
following form : 

(a9 cos 9~41 + a,* sin 9rp -i- . . . )” = (3.1) 

k2 (c4c7 sin 3rp + C3C7COS 3rp -i- . . .) X 

(ml. cos 2~ + rn2 sin 2r4 + m3)3 (fi3 cos 3q~ + p3* sin 3q7 +. . . ) 2 

Hence it follows that a, = 0, a,* y= 0. Using (1.3),(1.6) we write out 

e, 1(x1--- 2x,) (c,m, + c,m,) -1 (x2 -I- 2x,) (c3m1 - c,m,)l i- (3.2) 

2e, [(c,m, + camI)” - (c3ml - c,m,)21 == 0 

el I(xz -t- 2x,) (csmz + c4ml) - (x, - 2x,) (earn1 - C~FGJ] - 

4~~ (c3m2 + camI) (c3ml - cpmz) = 0 

Here 
x, = c* (c,a, - axc1 + 2 A*$J + c3 Wl f %a2 - 2 A,,d (3.3) 

X, = - cn (%% - ate1 i- 2 A,$*) -I- c2 (WI -I- Cl% - 2 Al,%) 

XQ = (a, - a,) (cs~ + W) - 2 A23 (co2 - ~3~) + a2 kc4 - 
cOc3) _I- a, (co2 - c12) - 2 a7cOc1 

% = (a, - a,) (c1c4 - bgcs) “i- 4 4&G - a2 (GA + %d i- 

a7 (ctlz - Cl’> + 2 WV1 

Because e12 j- e, 2 = 1, the determinant of Eqs. (3.2) equals zero. This leads to the 

caseS (1) cg - 0, cq = 0, (2) m, = 0, m2 = 0 

(3) bQ - 2 x4) kg+ - w2> i- (x2 + 24 (wz -I- wl) = 0 
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For Case (1) we have 

A,, = 0, A,, = A,, (3.4) 

Under conditions (3.4) the equalities a, = 0, as* = 0 can be written in the form 

cr [11s (C@r + c&J - x4 (w% - WJJ = 0 (3.5) 

C? 1x4 (cgq + c&q -t x3 fcs%? - c,mJ = 0 

If ~3’ f 1~4s = 0 or ml2 + m22 = 0, then the third coordinate axis is the principal 
axis and, consequently, the precession becomes regular. Therefore, with due regard to 

notation (1.3). from (3.5) it follows that e, cos 6 = 0. For cos 6 = 0, Eq. (3.1) takes 
the form 

i(-- 2 c7cs sin 9 -t . ..I (ml cos 2 Q, -+ mz sin 2 cp 4 . ..) (*14x3 x (3.6) 

coa4rp-+-1/4 Xqsin4q,+ . ..)+ . ..12=k2(-Zc+asin~-t 

. ..) (m,cos 2 ‘p -I- m,sin 2 cp + . ..) 3 P/z (AZ32 - -4137 sin3fl>: 

cos 3 'p +- . ..I 2 

Here we have indicated only the terms with the largest multiple of angle cp. From (3.6). 
by equating the coefficient of sin 4~ to zero, we determine that e, = 0. Since un- 
der this condition the body’s center of gravity lies on a perpendicular to a circular cross 
section of the inertia ellipsoid, by a rotation of the moving system around the third axis 
we achieve the equality A,, = 0. Returning to Eq. (3,1), we obtain 

E, = 0, k = 0, tg2 6 = A,,lA,,, A&33 - A,32 = 0 

The last constraint cannot hold for a real motion since from the condition that the kin- 

etic energy is a positive-definite quadratic form it follows that A,,A,, - AIs > 0. 
Thus, only regular precessions are possible in the Case (1). 

We look at Case (2). We have 

-43, (4, - A,,) + -423’ - -41,~ = 0, A,,&, - 4412 = 0 (3.7) 

If we assume c, -+ 0, then the equalities a, = 0, a,* = 0 lead to the equations 

ca (2 x.8 + 3x,) - c4 (2 x4 - 3 XI) = 0, c3 (2 %4 - 3 Xl) + c.$ x (3.8) 

(2 x3 + 3 xp) = 0 

Since the case ~3” 4- c4 ’ = 0 has been examined, from (3.8) follows: 

3x1 - 2 x4 = 0, 3 x3 + 2 xg = 0 

Substituting here ‘xi (i = 1, 2, 3, 4) from (3.3) and solving the equations obtained 
jointly with (3.7). we obtain 

A,, = -%,A,, / Asa, A,, = A12423 ,’ Am A,, = A,&, / 412 

Under these conditions the determinant det A vanishes ; this is mechanically mean- 
ingless. Therefore e, = 0. This condition shows that the body’s center of gravity lies 
on a perpendicular to a circular cross section of the gyration ellipsoid and, consequently, 
the equality A,, = (j can be achieved. By equating the coefficients of cos 8 CJ and 
cos 6 q in Eq. (3.1) to zero 
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IT sin% 6 
E, = cos 6 7 AZ2 [I? (A,, + A& sink 6 + k” cos @I2 = (3.9) 

PI’ sin4 6 (A,, + A,, + A$# cos 6 

Solving Eq. (3.9) relative to h?, we find two values for k2 

kg, = 
r (All + *3sy rd22 sin4 6 

.&zCOS6 ' G2> = cos fb 

Let k = kc,ta Equating the coefficient of sir 5 9 in Eq, (3.1) to zero leads to the 

condition A,, - A,, + A,, = 0, which contradicts (3.7). In the case k = kp,, , 
from (2. l), (2.2) follows 

* - rm 
vJ = k/133 COS 6 ' 

9' = const, 

Consequently, condition (2) leads to the semiregular precession (case already considered). 

Thus, condition (3) should be fulfilled when cp’ # corlst,, 9’ + const . Since for 
e, = 0 (~7 = 0) from Eqs. (3.2) we obtain either Case (1) or Case (Z), then in what 
follows it is necessary to assume 

c7 (nz,? +- m2’) (C3n + c42) f 0 (3.10) 

Let us now prove that k = 0. In fact, if we assume k # 0, then, by virtue of(3.10), 
from Eq. (3.1) it follows that fsi = Pi’= 0 (i = 0, 1, 2, 3).Forcos 6 # 0 we have 

(A,, - Ay3) (A,, - AZ2 + A,,) - 2 Am? + 2 AIs3 = 0 (3.11) 

A,, (A,, + A,, - A,,) f 2 A13Az8 = 0, A23 (A,, - A?.? - 

A,,) - 2 A,,A,, = 0 

A,, (Au - A,, -I- -423) + 2 A,,&, = 0 

Solving Eqs. (3.11) relative to AlI, Aza, Af3, we obtain 

A 3% = - 
.fiZ (‘413? + .-I&) 

“113.h 

which leads to the equalitv det -4 = 0. If cos 6 = 0, from the equalities 

pi* = 0 (i = 0,1, 2, 3) f 11 o ow the first two equations in (3.11) and 

A,, (A,, - A,% i- A,,) - 2 Al?? - 2 A22 = 0 

Pi = 

Here once again det A = 0. Consequently, all the quantities Pi, Pi* cannot vanish 
simultaneously ; therefore. it is necessary to require k = 0 in Eq. (3.1). 

We note the following property of precessions with nonconstant precession rates and 
self-rotation velocities: if (p’ # const, Q’ # eon&, then the center of gravity does 
not lie on the straight line (k) forming all through the motion a constant angle 6 with 
the vertical. This property can be obtained from Eqs. (3.2). Setting e, = 0 in them, 
we arrive either to the Case (I) of regular precession or to the Case (2) of semiregular 

precession. 
The author thanks P, V. Kharlamov for valuable advice while carrying out the work, 
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The Rauscher method is used to construct the steady-state resonance solutions 
of near-conservative nonautonomo~ multi-dimensional systems. It is assumed 

that the generating system has an analytic potential and admits of normaloscil- 
lations with rectilinear trajectories in configuration space. As is well known, 

the forced oscillations of systems with one degree of freedom in the resonance 
region are close to the natural oscillations of unperturbed conservative systems 

[1]. We present the possibility of generalizing this result to the multi-dimen- 
sional case, using the concept of normal forms of oscillations of conservative 
nonlinear systems 12, 31. By selecting special types of external actions it was 

shown in [4] that the resonance modes possess the properties of the normal oscil- 
lations of conservative systems. For sufficiently general types of external peri- 
odic perturbations of quasi-linear systems close to Llapunov systems, Malkin 
[5] has exhaustively studied the periodic modes. 

1. We consider the equations 

5, ** = fs (x1, 5?, . . . ,x,) -j- Eg, (x1, x2, . . . ,x,, a s= I, 2, . ..I n v.11 

Here E is a small parameter, f,, gs are analytic functions of xi, 22, . . . , a%; g, is 
a periodic function of t of period T. We assume that the unperturbed system is con- 

servative and admits of normal oscillations with rectilinear trajectories in con~g~ation 


